FEV1 Video Codec Specification

by Michael Niedermayer michaelni@gmx.at

Contents
1 Introduction

2 Terms and Definitions
2.1 Terms e e
2.2 Definitions

3 Conventions

3.1 Arithmetic operators
3.2 Assignment operators e e
3.3 Comparison Operators v i e e e e e e e e e
3.4 Order of operation precedence Lo
3.5 Range e
3.6 Bitstream functions.

4 General Description

4.1 Border . . .o e e
4.2 Median predictor
4.3 Context e
4.4 Quantization e
4.5 Colorspaceo e e
4.5.1 JPEG2000-RCT
4.6 Coding of the sample difference oo
4.6.1 Rangecodingmode L
4.6.2 Huffman coding mode

5 Bitstream

5.1 Configuration Record
5.1.1 In AVIFile Format
5.1.2 In ISO/IEC 14496-12 (MP4 File Format)
5.1.3 In NUT File Format

mailto:michaelni@gmx.at

5.2 Frame e 11

5.3 SHce . . . 12
5.4 Slice Header 12
5.5 Parameters 13
5.6 Quantization Tables 16
5.6.1 Restrictions e e 17

6 Changelog 17
7 ToDo 17
8 Bibliography 18
8.1 References 18
9 Copyright 18

1 Introduction

The FFV1 video codec is a simple and efficient lossless intra-frame only codec.
The latest version of this document is available at https://raw.github.com/FFmpeg/FFV1/master/ffvl.md

This document assumes familiarity with mathematical and coding concepts such as Range coding and YCbCr
colorspaces.

2 Terms and Definitions

2.1 Terms

The key words MUST, MUST NOT, SHOULD, and SHOULD NOT in this document are to be interpreted
as described in RFC 2119.

For reference, below is an excerpt of RFC 2119:

“MUST” means that the definition is an absolute requirement of the specification.
“MUST NOT” means that the definition is an absolute prohibition of the specification.
“SHOULD” means that there may exist valid reasons in particular circumstances to ignore a

particular item, but the full implications must be understood and carefully weighed
before choosing a different course.

“SHOULD NOT” means that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

2.2 Definitions

https://raw.github.com/FFmpeg/FFV1/master/ffv1.md

ESC

MSB
RCT

VLC

Escape symbol to indicate that the symbol to be stored is too large for normal storage and a
different method is used to store it.

Most significant bit, the bit that can cause the largest change in magnitude of the symbol.
Reversible Color Transform, a near linear, exactly reversible integer transform that converts
between RGB and YCbCr representations of a sample.

Variable length code.

3 Conventions

Note: the
ISO/IEC 9

operators and the order of precedence are the same as used in the C programming language
899.

3.1 Arithmetic operators

a+b
a-b
-a
a*b
a/b
a%b
a&b
alb
a>>b

a<<b

means a plus b.

means a minus b.

means negation of a.

means a multiplied by b.

means a divided by b with truncation of the result toward zero.

means remainder of a divided by b.

means bit-wise “and” of a and b.

means bit-wise “or” of a and b.

means arithmetic righ shift of two’s complement integer representation of a by b
binary digits.

means arithmetic left shift of two’s complement integer representation of a by b
binary digits.

3.2 Assignment operators

a=>o
at++
a—
a+=D>b

a-=

means a is assigned b.

is equivalent to a = a + 1.
is equivalent to a = a - 1.
is equivalent to a = a + b.
is equivalent to a = a - b.

3.3 Comparison operators

a>b
a>=Db
a<b
a<=b
a::
al=>hD
a&&b
allb
la
a?b:c

means a greater than b.

means a greater than or equal to b.
means a less than b.

means a less than or equal b.

means a equal to b.

means a not equalto b.

means boolean logical “and” of a and b.
means boolean logical “or” of a and b.
means boolean logical “not”.

means b if a is true otherwise c.

3.4 Order of operation precedence

When order of precedence is not indicated explicitly by use of parentheses, operations are evaluated in the
following order (from top to bottom, operations of same precedence being evaluated from left to right). This
order of operations is based on the order of operations used in Standard C.

at++, a-

la, —a
a*xb,a/b,akb
a+b,a-b

a<<b, a>hbo

a<b, a<=b, a>b, a>b»bD
a==>b, al!l=b

a&b

alb

a && b

allb

a?b:c

a=Db, a+=b, a-=>»

3.5 Range

a...b means any value starting from a to b, inclusive.

3.6 Bitstream functions

remaining bits_in_ bitstream() means the count of remaining bits after the current position in the
bitstream. It is computed from the NumBytes value multiplied by 8 minus the count of bits already read by
the bitstream parser.

4 General Description

Each frame is split in 1 to 4 planes (Y, Cb, Cr, Alpha). In the case of the normal YCbCr colorspace the Y
plane is coded first followed by the Cb and Cr planes, if an Alpha/transparency plane exists, it is coded last.
In the case of the JPEG2000-RCT colorspace the lines are interleaved to improve caching efficiency since it
is most likely that the RCT will immediately be converted to RGB during decoding; the interleaved coding
order is also Y, Cb, Cr, Alpha.

Samples within a plane are coded in raster scan order (left->right, top->bottom). Each sample is predicted
by the median predictor from samples in the same plane and the difference is stored see Coding of the Sample
Difference.

4.1 Border

For the purpose of the predictior and context, samples above the coded slice are assumed to be 0; samples
to the right of the coded slice are identical to the closest left sample; samples to the left of the coded slice
are identical to the top right sample (if there is one), otherwise 0.

0 O o 0 0 0
0 0 o 0 0 0

o
o
(oW
¢
©)

4.2 Median predictor

median(left, top, left + top - diag)
left, top, diag are the left, top and left-top samples
Note, this is also used in JPEG-LS and HuffYuv.

4.3 Context

tr

=
S

The quantized sample differences L-1, 1-tl, tl-t, t-T, t-tr are used as context:

context = Qol — t] + |Qol (Qu[t! — 1] +|Qu[(Q2[t — tr] + |Q2| (Qs[L — 1] + |Qs] Qu[T —1])))

If the context is smaller than 0 then -context is used and the difference between the sample and its predicted
value is encoded with a flipped sign.

4.4 Quantization

There are 5 quantization tables for the 5 sample differences, both the number of quantization steps and their
distribution are stored in the bitstream. Each quantization table has exactly 256 entries, and the 8 least
significant bits of the sample difference are used as index:

Q;la — b] = Table;[(a — b)&255]

4.5 Colorspace
4.5.1 JPEG2000-RCT

Cb=b—g
Cr=r—g
Y=g+ (Cb+Cr)>>2
g=Y —(Cb+Cr)>>2

r=Cr+g
b=Cb+g
JPEG2000

4.6 Coding of the sample difference

Instead of coding the n+1 bits of the sample difference with Huffman-, or Range coding (or n+2 bits, in
the case of RCT), only the n (or n+1) least significant bits are used, since this is sufficient to recover the
original sample. In the equation below, the term “bits” represents bits_ per raw_sample+1 for RCT or
bits per raw_sample otherwise:

coder_input = [(sampleidifference + 21’”571) & (21’”5 — 1)] — 2bits—1

4.6.1 Range coding mode

Early experimental versions of FFV1 used the CABAC Arithmetic coder from H.264 but due to the uncertain
patent/royality situation, as well as its slightly worse performance, CABAC was replaced by a range coder
based on an algorithm defined by G. Nigel N. Martin in 1979 RangeCoder.

4.6.1.1 Range binary values To encode binary digits efficiently a range coder is used. C} is the i-th
Context. B, is the i-th byte of the bytestream. b; is the i-th range coded binary value, Sy ; is the i-th initial
state, which is 128. The length of the bytestream encoding n binary symbols is j, bytes.

R;Si,c.
Ti:\‘ 12;)01J

Si+1,c; = zero__states, ..
Sit+1,c; = one__states, ..

Sit1p =95 = Ci#k

A
A

Ri+1 = 28t7; A Li+1 = 28lZ + Bl N ji+1 =5+1 = < 28

Riyi=t A Ligi=1; N =g = t;>28
Ry = 65280
Ly=28By + B;
Jo=2

4.6.1.2 Range non binary values To encode scalar integers it would be possible to encode each bit
separately and use the past bits as context. However that would mean 255 contexts per 8-bit symbol which
is not only a waste of memory but also requires more past data to reach a reasonably good estimate of the
probabilities. Alternatively assuming a Laplacian distribution and only dealing with its variance and mean
(as in Huffman coding) would also be possible, however, for maximum flexibility and simplicity, the chosen
method uses a single symbol to encode if a number is 0 and if not encodes the number using its exponent,
mantissa and sign. The exact contexts used are best described by the following code, followed by some
comments.

void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed) {
int i;
put_rac(c, state+0, !v);
if (v) {
int a= ABS(Vv);
int e= log2(a);

for (i=0; i<e; i++)

put_rac(c, state+1+MIN(i,9), 1); //1..10
put_rac(c, state+1+MIN(i,9), 0);
for (i=e-1; i>=0; i--)

put_rac(c, state+22+MIN(i,9), (a>>i)&1); //22..31

if (is_signed)
put_rac(c, state+1l + MIN(e, 10), v < 0); //11..21

4.6.1.3 Initial values for the context model At keyframes all range coder state variables are set to
their initial state.

4.6.1.4 State transition table one_ state; = default state_transition; + state_ transition_ delta;

zero_state; = 256 — one_ statessg—;

4.6.1.5 default_state_ transition
o, o, o0, 0, 0O, O, O, O, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99,100,101,102,103,
104,105,106,107,108,109,110,111,112,113,114,114,115,116,117,118,

119,120,121,122,123,124,125,126,127,128,129,130,131,132,133, 133,

134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,
150,151,152,152,153,154,155,156,157,158,159,160,161,162,163, 164,
165,166,167,168,169,170,171,171,172,173,174,175,176,177,178,179,
180,181,182,183,184,185,186,187,188,189,190,190,191,192,194,194,
195,196,197,198,199,200,201,202,202,204,205,206,207,208,209, 209,
210,211,212,213,215,215,216,217,218,219,220,220,222,223,224,225,
226,227,227,229,229,230,231,232,234,234,235,236,237,238,239,240,

241,242,243,244,245,246,247,248,248, 0, 0O, O, O, O, O, O,

4.6.1.6 alternative state transition table The alternative state transition table has been build using
iterative minimization of frame sizes and generally performs better than the default. To use it, the coder_ type
has to be set to 2 and the difference to the default has to be stored in the parameters. The reference
implemenation of FFV1 in FFmpeg uses this table by default at the time of this writing when Range coding
is used.

o, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
53, 74, 55, 57, 58, 58, 74, 60,101, 61, 62, 84, 66, 66, 68, 69,
8r, 82, 71, 97, 73, 73, 82, 75,111, 77, 94, 78, 87, 81, 83, 97,
85, 83, 94, 86, 99, 89, 90, 99,111, 92, 93,134, 95, 98,105, 98,

105,110,102,108,102,118,103,106,106,113,109,112,114,112,116,125,
115,116,117,117,126,119,125,121,121,123,145,124,126,131,127,129,
165,130,132,138,133,135,145,136,137,139,146,141,143,142,144,148,
147,155,151,149,1561,150,152,157,1563,154,156,168,158,162,161,160,
172,163,169,164,166,184,167,170,177,174,171,173,182,176,180,178,
175,189,179,181,186,183,192,185,200,187,191,188,190,197,193,196,
197,194,195,196,198,202,199,201,210,203,207,204,205,206,208,214,
209,211,221,212,213,215,224,216,217,218,219,220,222,228,223,225,
226,224,227,229,240,230,231,232,233,234,235,236,238,239,237,242,

241,243,242,244,245,246,247,248,249,250,251,252,252,253,254,255,

4.6.2 Huffman coding mode

This coding mode uses golomb rice codes. The VLC code is split into 2 parts, the prefix stores the most
significant bits, the suffix stores the k least significant bits or stores the whole number in the ESC case. The
end of the bitstream (of the frame) is filled with 0-bits so that the bitstream contains a multiple of 8 bits.

bits value
1 0
01 1

0000 0000 0001 11
0000 0000 0000 ESC

4.6.2.1 Prefix

non ESC the k least significant bits MSB first
ESC the value - 11, in MSB first order, ESC may only be used if the value cannot be coded as non ESC

4.6.2.2 Suffix

bits value

1
001
1 00
110
01 01
any 000000000000 10000000 139

NN O
NN O N O

4.6.2.3 Examples

4.6.2.4 Run mode Run mode is entered when the context is 0, and left as soon as a non-0 difference is
found, the level is identical to the predicted one, the run and the first different level is coded.

4.6.2.5 Run length coding The run value is encoded in 2 parts, the prefix part stores the more signif-
icant part of the run as well as adjusting the run_index which determines the number of bits in the less
significant part of the run. The 2nd part of the value stores the less significant part of the run as it is. The
run__index is reset for each plane and slice to 0.

log2_run[41]={

0, 0, 0, 0, 1, 1, 1, 1,
2, 2,2, 2,3, 3, 3, 3,
4, 4, 5, 5, 6, 6, 7,7,

8, 9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,
24,

};

if (run_count == 0 && run_mode == 1) {
if (get_bits1()) {
run_count = 1 << log2_run[run_index];
if (x + run_count <= w)
run_index++;
} else {
if (log2_run[run_index])
run_count = get_bits(log2_run[run_index]);
else
run_count = 0;
if (run_index)
run_index—-;
run_mode = 2;

The log2_ run function is also used within JPEGLS.

4.6.2.6 Level coding Level coding is identical to the normal difference coding with the exception that
the 0 value is removed as it cannot occur:

if (diff>0) diff--;
encode(diff);

Note, this is different from JPEG-LS, which doesn’t use prediction in run mode and uses a different encoding
and context model for the last difference On a small set of test samples the use of prediction slightly improved
the compression rate.

5 Bitstream

u(n) unsigned big endian integer using n bits

Sg Golomb Rice coded signed scalar symbol coded with the method described in Huffman Coding Mode
br Range coded boolean (1-bit) symbol with the method described in Range binary values

ur Range coded unsigned scalar symbol coded with the method described in Range non binary values
ST Range coded signed scalar symbol coded with the method described in Range non binary values

The same context which is initialized to 128 is used for all fields in the header.
Default values at the decoder initialization phase:

ConfigurationRecordIsPresent is set to 0.

5.1 Configuration Record
In the case of a bitstream with version >= 2, a configuration record is stored in the the underlying container,

at the track header level. It contains the parameters used for all frames. The size of the configuration record,
NumBytes, is supplied by the underlying container.

10

ConfigurationRecord(NumBytes) {
ConfigurationRecordIsPresent = 1
Parameters()
while(remaining bits_in_bitstream() > 32)
reserved_for_future_use // u(1)
configuration_record_crc_parity // u(32)

reserved_ for_ future_ use has semantics that are reserved for future use. Encoders conforming to this
version of this specification SHALL NOT write this value. Decoders conforming to this version of this
specification SHALL ignore its value.

configuration_ record_ crc__parity 32 bits that are choosen so that the configuration record as a whole
has a crc remainder of 0. This is equivalent to storing the crc remainder in the 32-bit parity. The CRC
generator polynom used is the standard IEEE CRC polynom (0x104C11DB7) with initial value 0.

This configuration record can be placed in any file format supporting configuration records, fitting as much
as possible with how the file format uses to store configuration records. The configuration record storage
place and NumBytes are currently defined and supported by this version of this specification for the following
container formats:

5.1.1 In AVI File Format
The Configuration Record extends the stream format chunk (“AVI 7, “hdlr”, “strl”, “strf”) with the Config-
urationRecord bistream. See AVI for more information about chunks.

NumBytes is defined as the size, in bytes, of the strf chunk indicated in the chunk header minus the size
of the stream format structure.

5.1.2 In ISO/IEC 14496-12 (MP4 File Format)

The Configuration Record extends the sample description box (“moov”; “trak”, “mdia”, “minf”, “stbl”,
“stsd”) with a “glbl” box which contains the ConfigurationRecord bitstream. See ISO14496 12 for more
information about boxes.

NumBytes is defined as the size, in bytes, of the “glbl” box indicated in the box header minus the size of
the box header.

5.1.3 In NUT File Format

The codec_specific_ data element (in “stream__header” packet) contains the ConfigurationRecord bitstream.
See NUT for more information about elements.

NumBytes is defined as the size, in bytes, of the codec_ specific_data element as indicated in the “length”
field of codec_ specific_ data

5.2 Frame

Frame() { type
keyframe br
if(keyframe && !ConfigurationRecordIsPresent)

Parameters()
for(i=0;1 < slice_count; i++)
Slice(1)

11

5.3 Slice

Slice(i) { type
if(version > 2)
SliceHeader(1)

if(colorspace__type == 0) {
for(p = 0; p < primary_ color_count; p++) {
Plane(p)
} else if(colorspace_type == 1) {

for(y = 0; y < height; y++)
for(p = 0; p < primary_ color__count; p++) {
Line(p, y)

}

if(1] version > 2)

slice size u(24)
if(ec) {

error_status u(8)

slicecrc_ parity u(32)

}
}

primary__color__count is defined as 1 + (chroma_planes 7 2: 0) 4+ (alpha_plane ? 1: 0).

slice__size indicates the size of the slice in bytes. Note: this allows finding the start of slices before previous
slices have been fully decoded. And allows this way parallel decoding as well as error resilience.

error__status specifies the error status.

value error status

0 no error
1 slice contains a correctable error
2 slice contains a uncorrectable error

Other reserved for future use

slice__crc__parity 32 bits that are choosen so that the slice as a whole has a crc remainder of 0. This
is equivalent to storing the crc remainder in the 32-bit parity. The CRC generator polynom used is the
standard IEEE CRC polynom (0x104C11DB7) with initial value 0.

5.4 Slice Header

SliceHeader(1) { type
slice x ur
slice_y ur
slice._width - 1 ur
slice_ height - 1 ur
for(j = 0; j < quant__table_index_ count; j++)

quant__table_index [i][]] ur
picture_ structure ur
sar_ num ur
sar__den ur

if(version > 3) {

12

reset_ contexts br
slice_ coding_mode ur

}
}

slice__x indicates the x position on the slice raster formed by num_ h_ slices. Inferred to be 0 if not present.
slice__y indicates the y position on the slice raster formed by num_ v_ slices. Inferred to be 0 if not present.
slice_ width indicates the width on the slice raster. Inferred to be 1 if not present.

slice__height indicates the height on the slice raster. Inferred to be 1 if not present.

quant__table__index__count is defined as 1 4+ ((chroma,_ planes || version <4) ? 1: 0) + (alpha_plane
?71:0).

quant__table__index indicates the index to select the quantization table set and the initial states for the
slice. Inferred to be 0 if not present.

picture__structure specifies the picture structure. Inferred to be 0 if not present.

value picure structure used

0 unknown

1 top field first

2 bottom field first
3 progressive

Other reserved for future use

sar__num specifies the sample aspect ratio numerator. Inferred to be 0 if not present. MUST be 0 if sample
aspect ratio is unknown.

sar__den specifies the sample aspect ratio numerator. Inferred to be 0 if not present. MUST be 0 if sample
aspect ratio is unknown.

reset__contexts indicates if slice contexts must be reset. Inferred to be 0 if not present.

slice__coding__mode indicates the slice coding mode. Inferred to be 0 if not present.

value slice coding mode

0 normal Range Coding or VLC
1 raw PCM
Other reserved for future use

5.5 Parameters

Parameters() { type
version ur
if(version > 2)

micro_version ur
coder__type ur

if(coder_type > 1)
for(i=1;1< 256; i++)
state_ transition_ delta] i | ST
colorspace _type ur

13

if(version > 0)

bits_ per raw__sample ur
chroma_ planes br
log2(h_ chroma_ subsample) ur
log2(v__chroma_ subsample) ur
alpha_ plane br
if(version > 1) {

num_h slices - 1 ur

num_v_ slices - 1 ur

quant__table count ur

}
for(i = 0;1i < quant_table_count; i++)
QuantizationTable(i)
if(version > 1) {
for(i= 0;i < quant_table_count; i++) {
states coded br
if(states_coded)
for(j = 0; j < context_count[1i]; j++)
for(k = 0; k < CONTEXT _SIZE; k++)

initial state delta[i][j][k] st
}
ec ur
intra ur

version specifies the version of the bitstream. Each version is incompatible with others versions: decoders
SHOULD reject a file due to unknown version. Decoders SHOULD reject a file with version < 2 &&
ConfigurationRecordIsPresent == 1. Decoders SHOULD reject a file with version >= 2 && Configura-
tionRecordIsPresent == 0.

value version

0 FFV1 version 0
1 FFV1 version 1
2 reserved®

3 FFV1 version 3

Other reserved for future use

* Version 2 was never enabled in the encoder thus version 2 files SHOULD NOT exist, and this document
does not describe them to keep the text simpler.

micro__version specifies the micro-version of the bitstream. After a version is considered stable (a micro-
version value is assigned to be the first stable variant of a specific version), each new micro-version after this
first stable variant is compatible with the previous micro-version: decoders SHOULD NOT reject a file due
to an unknown micro-version equal or above the micro-version considered as stable.

Meaning of micro__version for version 3:

value micro version

0..3 reserved®
4 first stable variant
Other reserved for future use

14

* were development versions which may be incompatible with the stable variants.

Meaning of micro_ version for version 4 (note: at the time of writting of this specification, version 4 is not
considered stable so the first stable version value is to be annonced in the future):

value micro_ version

0..TBA reserved*
TBA first stable variant
Other reserved for future use

* were development versions which may be incompatible with the stable variants.

coder__type specifies the coder used

value coder used

0 Golomb Rice
1 Range Coder with default state transition table
2 Range Coder with custom state transition table

Other reserved for future use

state__transition__delta specifies the range coder custom state transition table. If state transition_ delta
is not present in the bitstream, all range coder custom state transition table elements are assumed to be 0.

colorspace__type specifies the color space.

value color space used

0 YCbCr
1 JPEG 2000 RCT
Other reserved for future use

chroma_ planes indicates if chroma (color) planes are present.

value color space used

0 chroma planes are not present
1 chroma planes are present

bits_ per__raw__sample indicates the number of bits for each luma and chroma sample. Inferred to be 8
if not present.

value bits for each luma and chroma sample

0 reserved*
Other the actual bits for each luma and chroma sample

* Encoders MUST not store bits per raw sample = 0 Decoders SHOULD accept and interpret
bits per raw_sample = 0 as 8.

h_ chroma__subsample indicates the subsample factor between luma and chroma width (chroma_ width =
2—log2_h_chr0ma_subsampleluma ’LU’Ldth)

15

v__chroma__subsample indicates the subsample factor between luma and chroma height (chroma__height =
2—log27v7chromafsubsampleluma height)

alpha_ plane indicates if a transparency plane is present.

value color space used

0 transparency plane is not present
1 transparency plane is present

num__h_ slices indicates the number of horizontal elements of the slice raster. Inferred to be 1 if not
present.

num__v__slices indicates the number of vertical elements of the slice raster. Inferred to be 1 if not present.
quant__table__count indicates the number of quantization table sets. Inferred to be 1 if not present.

states__coded indicates if the respective quantization table set has the initial states coded. Inferred to be
0 if not present.

value Iinitial states

0 initial states are not present and are assumed to be all 128
1 initial states are present

initial__state__delta [i][j][k] indicates the initial range coder state, it is encoded using k as context
index and pred = j ? initial states[i][j- 1][k]: 128 initial state[i][j]|[k] = (pred + initial state delta|
k]) & 255

slice__count indicates the number of slices in the current frame, slice_count is 1 if it is not explicitly coded.

ec indicates the error detection/correction type.

value error detection/correction type

0 32bit CRC on the global header
1 32bit CRC per slice and the global header
Other reserved for future use

intra indicates the relationship between frames. Inferred to be 0 if not present.

value relationship

0 frames are independent or dependent (key and non key frames)
1 frames are independent (key frames only)
Other reserved for future use

5.6 Quantization Tables

The quantization tables are stored by storing the number of equal entries -1 of the first half of the table
using the method described in Range Non Binary Values. The second half doesn’t need to be stored as it is
identical to the first with flipped sign.

16

example:
Table: 001111 22-2-2-2-1-1-1-1 0
Stored values: 1, 3, 1

QuantizationTable(i) { // type
scale = 1
for(j = 0; j < MAX_CONTEXT_INPUTS; j++) {
QuantizationTablePerContext(i, j, scale)
scale *= 2 * len_count[1 J[j 1 - 1
}

context_count[i] = (scale + 1) / 2

MAX_CONTEXT_INPUTS is 5.

QuantizationTablePerContext(i, j, scale) { type
v=20
for(k =0; k < 128;) {
len -1 ST
for(a = 0; a < len; a++) {
quant_tables[i][j][k] = scale* v
k++
}
v++
}
for(k = 1; k < 128; k++) {
quant_ tables[1][j][256 - k | = -quant_tables[i][j][k]

quant__tables[i][j][128] = -quant__tables[i][j][127]
len_count[i][j]=v

quant__tables indicates the quantification table values.

context__count indicates the count of contexts.

5.6.1 Restrictions

width.height
4

In version 2 and later the maximum slice size in pixels is , unless the frame is smaller or equal

352x288 this is to ensure that fast multithreaded decoding is possible.

6 Changelog

See https://github.com/FFmpeg/FFV1/commits/master

7 ToDo

e mean,k estimation for the golomb rice codes

17

https://github.com/FFmpeg/FFV1/commits/master

8 Bibliography

8.1 References

RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels https://www.ietf.org/rfc/rfc2119.txt
ISO/IEC 9899 - Programming languages - C http://www.open-std.org/JTC1/SC22/WG14/www /standards
JPEG-LS FCD 14495 http://www.jpeg.org/public/fcd14495p.pdf

H.264 Draft http://bs.hhi.de/~wiegand/JVT-G050.pdf

HuffYuv http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html

FFmpeg http://ffmpeg.org

JPEG2000 http://www.jpeg.org/jpeg2000/

Range encoding: an algorithm for removing redundancy from a digitised message. Presented by G. Nigel
N. Martin at the Video & Data Recording Conference, IBM UK Scientific Center held in Southampton July
24-27 1979.

AVI RIFF File Format https://msdn.microsoft.com/en-us/library/windows/desktop/dd318189%28v=vs.
85%29.aspx

Information technology Coding of audio-visual objects Part 12: ISO base media file format http://www.iso.
org/iso/iso_ catalogue/catalogue_tc/catalogue_ detail.htm?csnumber=61988

NUT Open Container Format http://www.ffmpeg.org/~michael /nut.txt
9 Copyright

Copyright 2003-2013 Michael Niedermayer <michaelni@gmx.at> This text can be used under the GNU Free
Documentation License or GNU General Public License. See http://www.gnu.org/licenses/fdl.txt.

18

https://www.ietf.org/rfc/rfc2119.txt
http://www.open-std.org/JTC1/SC22/WG14/www/standards
http://www.jpeg.org/public/fcd14495p.pdf
http://bs.hhi.de/~wiegand/JVT-G050.pdf
http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html
http://ffmpeg.org
http://www.jpeg.org/jpeg2000/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318189%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318189%28v=vs.85%29.aspx
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=61988
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=61988
http://www.ffmpeg.org/~michael/nut.txt
http://www.gnu.org/licenses/fdl.txt

	Introduction
	Terms and Definitions
	Terms
	Definitions

	Conventions
	Arithmetic operators
	Assignment operators
	Comparison operators
	Order of operation precedence
	Range
	Bitstream functions

	General Description
	Border
	Median predictor
	Context
	Quantization
	Colorspace
	JPEG2000-RCT

	Coding of the sample difference
	Range coding mode
	Huffman coding mode

	Bitstream
	Configuration Record
	In AVI File Format
	In ISO/IEC 14496-12 (MP4 File Format)
	In NUT File Format

	Frame
	Slice
	Slice Header
	Parameters
	Quantization Tables
	Restrictions

	Changelog
	ToDo
	Bibliography
	References

	Copyright

