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            : Introduction

● Introduction
● Update on our assembly coverage and 

some recent improvements
● Update on adoption
● A slide that I should have included last 

year on sponsorship
● Conclusion

Goals of this Presentation:
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            : Why do we need a Fast Software Decoder?

● To show off the awesomeness of AV1, we 
need an ecosystem that supports it
○ But my phone (or TV, or laptop) doesn’t 

have hardware AV1 decoding yet
○ This slows down early adoption and can 

cause uptake to stall entirely: content 
availability and device support are 
mutually dependent 

● We need a software decoder to jumpstart 
adoption and break the dependency cycle!
○ That is dav1d, introduced here at VDD in 

2018
○ Goal: be an awesome software decoder 

until hardware makes us irrelevant
● So, where are we now?

Raison d’être
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            : Where We Are Today (i.e. last year)

We’re pretty much done!
● 80% asm (>150kLOC), 20% C (28kLOC)

x86:
● 95% complete SSSE3 for 8, 10 and 12bpc 

content, runs on x86-32 & x86-64
○ 10-bit inverse transforms are SSE4

● 98% complete AVX2 for 8, 10 and 12bpc 
content, runs on x86-64

● 80% done with AVX512-IceLake for 8, 10 and 
12bpc content, runs on x86-64
○ Lacks directional intra prediction

Arm:
● 95% complete Neon for 8, 10 and 12bpc 

content, runs on arm32 & aarch64

Let’s have a look at some of this assembly!

Current State:
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            : Where We Are Today (i.e. last year)

We’re pretty much done!
● 80% asm (>150kLOC), 20% C (28kLOC)

I should not have said that!

Per architecture:
● C: 31kLOC
● x86: 160kLOC (SSSE3, AVX2, AVX512)
● arm: 72kLOC
● risc-V64: 5.1kLOC
● loongaarch: 23kLOC
● ppc: 5.1kLOC

Current State:
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            : Asm (mostly) Improvements Since 2023

arm:
● dotprod, imm8, SVE2 extensions (Arpad)
● use 6-tap (instead of 8-tap) filter for MC 

when not sharp (Arpad) - 7-15% (!!)
● SGR improvements to calculate (instead of 

table-look-up) x_by_x (Kyle)

x86:
● use 6-tap (instead of 8-tap) filter for MC 

when not sharp (Henrik, based on Arpad’s 
arm variant)

● SGR improvements to calculate (instead of 
table-look-up) x_by_x (Henrik, based on 
proof-of-concept by Kyle)

risc-v64 (Nathan, Bogdan, Remi), loongaarch 
(Hecai & all), ppc (Luca):
● Lots of SIMD added.

Algorithmic:
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            : Asm (mostly) Improvements Since 2023

arm:
● dotprod, imm8, SVE2 extensions (Arpad)
● use 6-tap (instead of 8-tap) filter for MC 

when not sharp (Arpad) - 7-15% (!!)
● SGR improvements to calculate (instead of 

table-look-up) x_by_x (Kyle)

x86:
● use 6-tap (instead of 8-tap) filter for MC 

when not sharp (Henrik, based on Arpad’s 
arm variant)

● SGR improvements to calculate (instead of 
table-look-up) x_by_x (Henrik, based on 
proof-of-concept by Kyle)

risc-v64 (Nathan, Bogdan, Remi), loongaarch 
(Hecai & all), ppc (Luca):
● Lots of SIMD added.

Algorithmic:

dst[y,x] = c1 * src[y,x-3] +
           c2 * src[y,x-2] +
           c3 * src[y,x-1] +
           c4 * src[y,x+0] +
           c5 * src[y,x+1] +
           c6 * src[y,x+2] +
           c7 * src[y,x+3] +
           c8 * src[y,x+4];

if c1 == 0 and c8 == 0:

dst[y,x] = c2 * src[y,x-2] +
           c3 * src[y,x-1] +
           c4 * src[y,x+0] +
           c5 * src[y,x+1] +
           c6 * src[y,x+2] +
           c7 * src[y,x+3];
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            : Asm (mostly) Improvements Since 2023

arm:
● dotprod, imm8, SVE2 extensions (Arpad)
● use 6-tap (instead of 8-tap) filter for MC 

when not sharp (Arpad) - 7-15% (!!)
● SGR improvements to calculate (instead of 

table-look-up) x_by_x (Kyle)

x86:
● use 6-tap (instead of 8-tap) filter for MC 

when not sharp (Henrik, based on Arpad’s 
arm variant)

● SGR improvements to calculate (instead of 
table-look-up) x_by_x (Henrik, based on 
proof-of-concept by Kyle)

risc-v64 (Nathan, Bogdan, Remi), loongaarch 
(Hecai & all), ppc (Luca):
● Lots of SIMD added.

Algorithmic:

x = x_by_x[z];

x = 256 / (z + 1);

(in float, because there is 
no int SIMD div)
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            : Decoding Performance Analysis

5% 10%
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            : concluding remarks

● dav1d is a pretty fast AV1 decoder
● It’s used in many places:
○ Browsers (Chrome / Firefox / Safari *)
○ Open Source Media Frameworks & 

applications based on them: VLC, 
FFmpeg, GStreamer, etc.

○ System Frameworks: AV1 Video 
Extension available on Microsoft Store, 
AVIF support using dav1d on 
MacOS/iPhoneOS, recent integration as 
software fallback for Android

○ Closed-source mobile applications 
(Netflix, Instagram Reels)

○ Probably others but we don’t really keep 
track, because…

Adoption

https://engineering.fb.com/2023/02/21/video-engineering/av1-codec-facebook-instagram-reels/
https://netflixtechblog.com/netflix-now-streaming-av1-on-android-d5264a515202
https://hacks.mozilla.org/2019/05/firefox-brings-you-smooth-video-playback-with-the-worlds-fastest-av1-decoder/

https://engineering.fb.com/2023/02/21/video-engineering/av1-codec-facebook-instagram-reels/
https://netflixtechblog.com/netflix-now-streaming-av1-on-android-d5264a515202
https://hacks.mozilla.org/2019/05/firefox-brings-you-smooth-video-playback-with-the-worlds-fastest-av1-decoder/
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            : concluding remarks

● CDEF in block stripes (!1458)
● GPU acceleration
● Continue asm work for new instruction 

sets (e.g. SVE2, RISC-V, PPC, MIPS)
● dAV2d

Future Directions



TWO ORIOLES

 

12

            : Sponsorship & Thanks (forgotten last year)

Some dav1d contributions were made 
possible by sponsorship from:

● Alliance of Open Media
● Meta
● Netflix

Some large-scale projects like 10-bit 
assembly, the task-threading framework or 
the initial start of the project were made 
possible by the above parties. Without them, 
dav1d would not be where it is today.

Thank you!

Funding acknowledgements:
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