
An Overview of

Ronald S. Bultje | Two Orioles

September 2023November 2024

VDD 20234

TWO ORIOLES

2

 : Introduction

● Introduction
● Update on our assembly coverage and

some recent improvements
● Update on adoption
● A slide that I should have included last

year on sponsorship
● Conclusion

Goals of this Presentation:

TWO ORIOLES

3

 : Why do we need a Fast Software Decoder?

● To show off the awesomeness of AV1, we
need an ecosystem that supports it
○ But my phone (or TV, or laptop) doesn’t

have hardware AV1 decoding yet
○ This slows down early adoption and can

cause uptake to stall entirely: content
availability and device support are
mutually dependent

● We need a software decoder to jumpstart
adoption and break the dependency cycle!
○ That is dav1d, introduced here at VDD in

2018
○ Goal: be an awesome software decoder

until hardware makes us irrelevant
● So, where are we now?

Raison d’être

TWO ORIOLES

4

 : Where We Are Today (i.e. last year)

We’re pretty much done!
● 80% asm (>150kLOC), 20% C (28kLOC)

x86:
● 95% complete SSSE3 for 8, 10 and 12bpc

content, runs on x86-32 & x86-64
○ 10-bit inverse transforms are SSE4

● 98% complete AVX2 for 8, 10 and 12bpc
content, runs on x86-64

● 80% done with AVX512-IceLake for 8, 10 and
12bpc content, runs on x86-64
○ Lacks directional intra prediction

Arm:
● 95% complete Neon for 8, 10 and 12bpc

content, runs on arm32 & aarch64

Let’s have a look at some of this assembly!

Current State:

TWO ORIOLES

5

 : Where We Are Today (i.e. last year)

We’re pretty much done!
● 80% asm (>150kLOC), 20% C (28kLOC)

I should not have said that!

Per architecture:
● C: 31kLOC
● x86: 160kLOC (SSSE3, AVX2, AVX512)
● arm: 72kLOC
● risc-V64: 5.1kLOC
● loongaarch: 23kLOC
● ppc: 5.1kLOC

Current State:

TWO ORIOLES

6

 : Asm (mostly) Improvements Since 2023

arm:
● dotprod, imm8, SVE2 extensions (Arpad)
● use 6-tap (instead of 8-tap) filter for MC

when not sharp (Arpad) - 7-15% (!!)
● SGR improvements to calculate (instead of

table-look-up) x_by_x (Kyle)

x86:
● use 6-tap (instead of 8-tap) filter for MC

when not sharp (Henrik, based on Arpad’s
arm variant)

● SGR improvements to calculate (instead of
table-look-up) x_by_x (Henrik, based on
proof-of-concept by Kyle)

risc-v64 (Nathan, Bogdan, Remi), loongaarch
(Hecai & all), ppc (Luca):
● Lots of SIMD added.

Algorithmic:

TWO ORIOLES

7

 : Asm (mostly) Improvements Since 2023

arm:
● dotprod, imm8, SVE2 extensions (Arpad)
● use 6-tap (instead of 8-tap) filter for MC

when not sharp (Arpad) - 7-15% (!!)
● SGR improvements to calculate (instead of

table-look-up) x_by_x (Kyle)

x86:
● use 6-tap (instead of 8-tap) filter for MC

when not sharp (Henrik, based on Arpad’s
arm variant)

● SGR improvements to calculate (instead of
table-look-up) x_by_x (Henrik, based on
proof-of-concept by Kyle)

risc-v64 (Nathan, Bogdan, Remi), loongaarch
(Hecai & all), ppc (Luca):
● Lots of SIMD added.

Algorithmic:

dst[y,x] = c1 * src[y,x-3] +
 c2 * src[y,x-2] +
 c3 * src[y,x-1] +
 c4 * src[y,x+0] +
 c5 * src[y,x+1] +
 c6 * src[y,x+2] +
 c7 * src[y,x+3] +
 c8 * src[y,x+4];

if c1 == 0 and c8 == 0:

dst[y,x] = c2 * src[y,x-2] +
 c3 * src[y,x-1] +
 c4 * src[y,x+0] +
 c5 * src[y,x+1] +
 c6 * src[y,x+2] +
 c7 * src[y,x+3];

TWO ORIOLES

8

 : Asm (mostly) Improvements Since 2023

arm:
● dotprod, imm8, SVE2 extensions (Arpad)
● use 6-tap (instead of 8-tap) filter for MC

when not sharp (Arpad) - 7-15% (!!)
● SGR improvements to calculate (instead of

table-look-up) x_by_x (Kyle)

x86:
● use 6-tap (instead of 8-tap) filter for MC

when not sharp (Henrik, based on Arpad’s
arm variant)

● SGR improvements to calculate (instead of
table-look-up) x_by_x (Henrik, based on
proof-of-concept by Kyle)

risc-v64 (Nathan, Bogdan, Remi), loongaarch
(Hecai & all), ppc (Luca):
● Lots of SIMD added.

Algorithmic:

x = x_by_x[z];

x = 256 / (z + 1);

(in float, because there is
no int SIMD div)

TWO ORIOLES

9

 : Decoding Performance Analysis

5% 10%

TWO ORIOLES

10

 : concluding remarks

● dav1d is a pretty fast AV1 decoder
● It’s used in many places:
○ Browsers (Chrome / Firefox / Safari *)
○ Open Source Media Frameworks &

applications based on them: VLC,
FFmpeg, GStreamer, etc.

○ System Frameworks: AV1 Video
Extension available on Microsoft Store,
AVIF support using dav1d on
MacOS/iPhoneOS, recent integration as
software fallback for Android

○ Closed-source mobile applications
(Netflix, Instagram Reels)

○ Probably others but we don’t really keep
track, because…

Adoption

https://engineering.fb.com/2023/02/21/video-engineering/av1-codec-facebook-instagram-reels/
https://netflixtechblog.com/netflix-now-streaming-av1-on-android-d5264a515202
https://hacks.mozilla.org/2019/05/firefox-brings-you-smooth-video-playback-with-the-worlds-fastest-av1-decoder/

https://engineering.fb.com/2023/02/21/video-engineering/av1-codec-facebook-instagram-reels/
https://netflixtechblog.com/netflix-now-streaming-av1-on-android-d5264a515202
https://hacks.mozilla.org/2019/05/firefox-brings-you-smooth-video-playback-with-the-worlds-fastest-av1-decoder/

TWO ORIOLES

11

 : concluding remarks

● CDEF in block stripes (!1458)
● GPU acceleration
● Continue asm work for new instruction

sets (e.g. SVE2, RISC-V, PPC, MIPS)
● dAV2d

Future Directions

TWO ORIOLES

12

 : Sponsorship & Thanks (forgotten last year)

Some dav1d contributions were made
possible by sponsorship from:

● Alliance of Open Media
● Meta
● Netflix

Some large-scale projects like 10-bit
assembly, the task-threading framework or
the initial start of the project were made
possible by the above parties. Without them,
dav1d would not be where it is today.

Thank you!

Funding acknowledgements:

Thank
You
Ronald S. Bultje

rbultje@twoorioles.com

https://code.videolan.org/videolan/dav1d

Henrik Gramner
Martin Storsjö
Ronald S. Bultje
Janne Grunau
James Almer
Nathan E. Egge
Victorien Le Couviour--Tuffet
Matthias Dressel
Jean-Baptiste Kempf
Marvin Scholz
Luc Trudeau
Arpad Panyik
yuanhecai
Luca Barbato
Niklas Haas
Hugo Beauzée-Luyssen
Konstantin Pavlov
Kyle Siefring
David Michael Barr
Steve Lhomme
Cameron Cawley
Wan-Teh Chang
B Krishnan Iyer
Francois Cartegnie
Liwei Wang
Bogdan Gligorijević
David Conrad
Michael Bradshaw
pengxu
Derek Buitenhuis
Jan Beich
Raphaël Zumer
Xuefeng Jiang
jinbo
Christophe Gisquet
Justin Bull
Boyuan Xiao
Dale Curtis
Emmanuel Gil Peyrot
Raphael Zumer
zhoupeng
Kacper Michajłow
Rupert Swarbrick
Thierry Foucu
Thomas Daede

guxiwei
André Kempe
Colin Lee
Jonathan Wright
Lynne
Michail Alvanos
Nico Weber
Salome Thirot
SmilingWolf
Tristan Laurent
Tristan Matthews
Vittorio Giovara
Yannis Guyon
Andrey Semashev
Anisse Astier
Anton Mitrofanov
Brad Smith
Charlie Hayden
Cosmin Stejerean
Dmitriy Sychov
Ewout ter Hoeven
Fred Barbier
Hao Chen
Jean-Yves Avenard
Joe Drago
MARBEAN
Mark Shuttleworth
Matthieu Bouron
Mehdi Sabwat
Nicolas Frattaroli
Pablo Stebler
Peter Collingbourne
Rostislav Pehlivanov
Sebastian Dröge
Shiz
Steinar Midtskogen
Sylvain BERTRAND
Sylvestre Ledru
Timo Gurr
Vibhoothi
Vignesh Venkatasubramanian
Xavier Claessens
Xu Guangxin
kossh1
skal

$ git shortlog -sn

mailto:rbultje@twoorioles.com
https://code.videolan.org/videolan/dav1d

